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Bottleneck in Computational Simulation

Timestep Solver
X = F(x',t)

Nonlinear Solver
Xkt1 = Xk + Axy

Linear Solver

S
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How fast can we solve Ax = b?
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Figure: Evolution of Machines & Algorithms for solving 3D Poisson
Equation (Adapted from Deville)
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Figure: Solved efficiently as
computational power increases.
(Images by Duffy & Donzis)
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Preconditioning

Use structure of discrete problem to our advantage
o Parallelism
o Similarities
o Approximations

Design P so that AP~ Px = b is cheaper than Ax = b.
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Example: Convection-Diffusion

—Viu+w-u=f
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Parallelism via Dense interior and Sparse element boundaries
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Discrete System operator

A= (B C)+(C®B)
ci1B ci2B ... c¢B
CoB— 02.18 02.28 ... CoB
Ck1 B CkgB . Ck/B

Similarity in Tensor Product Structure
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Approximate Model

Approximation gives us fast

inverse operation on each
element
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Sample Results

Figure: Computed Solution for Double Glazing Problem
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Current Work

e Convection in Binary Alloys with Jeff McFadden @ NIST
¢ Reactive Wetting with Daniel Wheeler @ NIST
e Climate Model with Kate Evans @ ORNL
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